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MINIMUM-FUEL  FORMATION  RECONFIGURATION 
OF MULTIPLE  FREE-FLYING  SPACECRAFT 

P.K.C. Wang'  and F.Y. Hadaegh2 

Abstract 

The formation reconfiguration of multiple free-flying spacecraft is posed as an  optimization 

problem involving minimum fuel expenditure. A method  for  obtaining simple solutions to 

this  problem is proposed. The basic idea is to break up the  formation reconfiguration 

process into a sequence of simple manuevers involving a  small  number of spacecraft at a 

time. Moreover, the spacecraft move along  straightline  paths  in  the 3-dimensional space. 

Thus,  the minimum-fuel reconfiguration problem can  be reduced to  an optimization problem 

involving permutation groups. The proposed approach requires seeking fuel minimization 

over the  set of all spacecraft permutation cycles of lengths 2 2. Examples are given to 

illustrate  the  application of the proposed method. 

Introduct ion 

Recently, the use of multiple  spacecraft for long base-line interferometers, magnetosphere 

studies,  and space-based  communication networks was considered. Multiple-spacecraft in- 

terferometry was first proposed by Stachnik and his coworkers [1],[2). Its feasibility for 

LEO (Low-Earth-Orbit) was studied by DeCue [3] with emphasis on using thrust-free  orbits 

to  reduce  the  amount of necessaw control effort for formation keeping. A description of 

the recently  proposed New Millennium separated spacecraft interferometer was  given in (41. 

Subsequently, various problems associated  with the coordination and control of formation 

flying of multiple  spacecraft were studied.  Wang  and Hadaegh [5],[6] derived various control 
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laws for the coordination and control of free-flying and LEO multiple  spacecraft moving in 

formation using a Lyapunov approach. No optimization  criteria were considered. A col- 

lection of papers  and  presentations on formation flying  up to 1996 was complied by Lau 

[7]. Recently, various key issues associated with  formation flying  were identified in a work- 

shop on formation flying and micro-propulsion [8]. It is obvious that efficient use of fuel is 

one of the  main issues in  any  spacecraft maneuvers. In physical situations, failure  in one 

or more spacecraft may occ-ur, it is necessary to consider different options in maintaining 

the spacecraft  formation  without  impairing  its mission. The  failure may take  on various 

forms. When  the failure is sufficiently severe such that  the spacecraft is  no longer useful, 

removal of the spacecraft from the formation is necessary. A possible option is to reconfig- 

ure  the formation. Also, a  change of mission objectives during flight may require  formation 

reconfiguration. For example, in  the case of an interferometer,  formation  reconfiguration 

may be required to  suit a new target. Since the spacecraft have limited fuel onboard, it is 

important  that  the formation reconfiguration manuevers are accomplished with  minimum 

fuel expenditure.  Beard, McLain and Hadaegh [9] considered the problem for equalizing the 

fuel expenditure  for  multiple  spacecraft  during  a  retargeting  maneuver  without  formation 

reconfiguration. 

In  this  paper, we present a  method for obtaining simple solutions to  the minimum-fuel 

formation  reconfiguration problem. The basic idea is to break up the formation reconfigura- 

tion process into  a sequence of simple manuevers involving a small number of spacecraft.  In 

the development of this  paper,  the formulation of the formation  reconfiguration problem is 

discussed first. Then  an analysis of the basic manuevers which are relevant to  the proposed 

solution  method is presented. The application of the proposed method for solving two types 

of minimum-fuel formation  reconfiguration problems is discussed in  detail,  and  illustrated 

by examples. 
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Spacecraft  Formation 

In general,  a  formation may be composed of identical spacecraft as in the ESA/NASA 

Cluster [lo],  or not all identical  spacecraft as in the proposed NASA DS-3 interferometer 

[4]. In the  latter case, the combiner and collector spacecraft have different structures  and 

characteristics. In  this  study, we consider a spacecraft  formation  consisting of P subsets 

of freeflying  spacecraft in the absence of gravitational fields or disturbances. Each subset 

Sj C Z consists of N j  identical spacecraft, and c j = l  N j  = N ,  where Z denotes the index 

set ( 1 , .  . . , N } .  

P 

Let .Fo denote  the  inertial  frame  with origin 0 in the 3-dimensional Euclidean space R3. 

Given a basis Bo = { e l ,  e2, e3} for . F O ,  the representation of a  vector a = 3 aiei E R3 

with  respect to Bo is denoted by the column vector [a], = ( a l ,  a2, ~ 3 ) ~ .  Let r i ( t )  and r t ( t )  

denote respectively the  actual  and desired positions of the mass center of the  i-th spacecraft 

at  time t relative to Fo. The point  set P ( t )  = { r l ( t ) ,  . . . , r ~ ( t ) }  generates a formation 

pattern at  time t .  The convex polytope C ( t )  defined by c o ( P ( t ) )  (the convex hull of P ( t ) )  

is referred to hereafter  as  the formation body at time t .  In  formation reconfiguration, a 

desired  formation  pattern given by P d ( t )  = {dl(t), . . . , dN(t)} defined for each t in some 

time interval IT is specified, where di(t) corresponds to  the position of the  i-th point in  the 

desired formation  pattern  at  time t relative to Fo. The formation patterns P ( t )  (or P d ( t ) ) ,  

t E I T ,  are  said  to  be shape-invariant over some time  interval I T ,  if the Euclidean  distance 

between any  pair of distinct  points in the formation pattern  at  time t is constant for all 

t E I T .  This implies that  the geometric shape of the formation  body does not vary with 

time over IT .  

In many physical situations involving subsets Sj of identical  spacecraft,  it is only required 

that each point  in the desired formation point set P d ( t )  be  occupied by some spacecraft 

from a specified S,. Thus,  the  i-th element di(t) in P d ( t )  may not  correspond to r t ( t ) .  For 

3 



example, for a spacecraft  triad in a  triangular  formation wit l}, S 2  = {2,3} ,  and 

In  formation  design, one may wish to include a  number of spare  spacecraft in the formation 

for backup in  the event of spacecraft failure. The  spare spacecraft type should  be selected by 

considering their  importance  in  maintaining  the basic functions of the formation. The spare 

spacecraft  position  relative to  the formation should be chosen so that  they  do not  interfere 

with  formation  task  performance,  and also permits efficient formation reconfiguration in case 

of spacecraft failure. For example, for a  regular tetrahedral  formation  as  in  the ESA/NASA 

Cluster,  it may be desirable to have the  spare spacecraft  located  near the center of the 

tetrahedron so that  they  are nearly  equidistant  to  any  active  spacecraft. 

Formation Reconfiguration 

Formation reconfiguration can  be classified into two basic types.  In Type 1, each space- 

craft is required to occupy a specified position  in the desired reconfigured formation, while as 

in  Type 2, a specified position in the desired reconfigured formation may be occupied by any 

spacecraft of a particular type. In general, the  total  number of spacecraft before and  after 

reconfiguration may differ due  to  the presence of failed spacecraft, and/or  augmentation of 

the  number of spacecraft to  attain a larger  formation.  This situation  can also arise when a 

large  formation is partitioned  into  a  number of small formations, or enlarged by merging a 

collection of small  formations. 

In  the case where the  total  number of spacecraft is  less than  that of the initial  formation, it 

is possible that only a limited number of useful formation patterns  can  be generated from the 

reduced  number of spacecraft, especially when the spacecraft are  not all identical. In  fact,  it 

may be necessary to remove additional  spacecraft before a useful geometric  formation pattern 
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can be obtained. For example, consider an initial  formation consisting of  two different  types 

of equally numbered  spacecraft placed on  a circle with equal spacing. In  order  to  retain 

the circle formation  with equal spacecraft spacing after reconfiguration, the number of these 

two types of spacecraft must be  the same. Thus, any removal must be  made in pairs of 

nonidentical  spacecraft. In what follows, we assume that  the  total  number of spacecraft 

before the  initiation of the reconfiguration process has been adjusted to coincide with that 

in  the desired reconfigured formation. 

In the  formation reconfiguration manuevers, it is important to minimize the  total fuel ex- 

penditure.  In  the absence of gravitational field and  other  disturbances,  this  can be achieved 

by requiring the spacecraft to move along straightline  paths in R3.  Thus, a basic spacecraft 

manuever is to move from one specified point to  another along a  straightline  path  with a 

minimum  amount of fuel. In  what follows, the controls for this  type of manuevers will be 

discussed first. Then,  the minimum-fuel formation reconfiguration problem for each type of 

formation  reconfiguration will be discussed separately. 

Basic Manuevers Consider an initial  formation whose pattern  at  time t 2 0 is  given  by 

p"(t)  = (rT(t), . . . , r%(t)}. The evolution of r:(t) with  time t is governed by 

where fz = f$(t) is a given thrust program for generating rp = r;(t), and Mi is the mass of 

the  i-th  spacecraft. 

Let the position of the  i-th spacecraft in the initial  formation with respect to  the inertial 

frame 3" at time t be given  by r:(t). Let 
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where 11 . 11 denotes the usual Euclidean  norm. 

A basic manuever is to translate  the  i-th spacecraft in the direction W i ( t )  to  its  target 

position rt (Ti)  at some time Ti > 0. Let the  actual  and desired positions r i ( t )  and rf(t) of 

the  i-th spacecraft  during  translation  be described respectively by 

where fci denotes the actual  control thrust for the  i-th  spacecraft,  and ft = ft(t) is the 

required thrust  program for generating rt = rf(t). 

Consider the projection of (rf(t) - r i ( t ) )  onto  the direction wi(t) given by 

where ( - ,  .) denotes the usual inner  product  on R3.  By differentiation and making use of (1) 

and (4), we have 

(6) 

We assume  that r:(t) and rt(t) have the forms: 

where q = q(t) is a given function of t ,  representing the  formation  drift vector. Then, 

W i ( t )  = (rf(0) - rf(O))/Ilrt(O) - rf(0)ll is a constant  vector,  implying that  the distance 

between rf(t) and r:(t)  is time  invariant, and f $ ( t )  = fz(t). Thus, ( 6 )  reduces to 

where t i i  corresponds to  the effective control along the direction wi(t). We assume that  the 

admissible t2i = i i i ( t )  are piecewise continuous functions of t satisfying Iiii(t)l 5 G i  for all t ,  
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where , t i ;  is a specified positive constant. Let S i  = siMi/Gi and ui = C i / i i i -  Then, (8) can 

be rewritten in the following normalized form: 

d 2  S ;  
d t 2  
-= ?.Lis 

Now, given a terminal  time Ti < 00, the minimum-fuel translational manuever problem 

is to find an admissible normalized control ur = u r ( t )  defined on  the  time interval [0,  Ti] 

which steers  the  initial  state Z i ( 0 )  = s i (O)Mi/ . i i i  = Ilpzi(O)l lMi/Gi ,  ( d S i / d t ) ( O )  = - O  to  the 

target  state  at  time Ti given  by &(Ti) = 0, ( d i i i / d t ) ( T i )  = 0 such that  the fuel expenditure 

associated with  the  translational manuever given by 

Ti 
~ ( u i )  = a i  1 ~ u i ( t > l d t  (9) 

is minimized, where ai is a specified positive proportionality  constant. Here, we have as- 

sumed that  the rate of fuel consumption at any time is proportional to  the magnitude of 

the control  variable at  time t. 

The  complete  solution  to  this problem was given in [lo]. Let x 1  = 3 i ,  and x2 = d x l / d t  

so that (8’) takes  on  the  standard form: 

5 d t  [“‘I  x2 = [ ; ; I  , 

and  the  optimal control problem corresponds to finding an admissible control defined on the 

time interval [0, T i ]  such that  the initial state x .  = ( X ~ ~ , Z Z ~ ) ~  is steered  to  the zero state 

at  time T, with minimum fuel expenditure. 

Let 



The above  sets are shown in Fig.1. 

Given an  initial  state x ,  = ( z 1 , , ~ 2 , ) ~  E R 2  at  time t = 0, the foregoing problem has a 

solution if and only if Ti 2 Ti*, where Ti' is the minimum time  for  steering x ,  to  the zero 

state, or 

{ x20 + d- for x ,  E R1 U R 4 ,  

1x20 I for x ,  E r+ u r-. 
Ti 2 Ti+ = - 2 2 ,  + J - 4 ~ 1 ,  + 2x:, for x ,  E ~2 u 723, (13) 

Assuming that condition (13) is satisfied, then for all x ,  E R 1  and all 0 < Ti < m; or 

X, E R 4  and all Ti 5 - 2 2 2 ,  1 - 2, the  optimal control u* = u*( t )  is given uniquely by 

-1 for 0 5 t < t l ,  
0 for t l  5 t < t 2 ,  (14) 
1 for t 2  5 t 5 Ti. 

where 

The corresponding minimum fuel expenditure is  given by 

A realization of the foregoing optimal  control in feedback form  is given by 

where 
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The foregoing optimal control is relevant to the minimum-fuel formation reconfiguration 

problem to be considered later.  The  optimal controls corresponding to other conditions on 

X, and Ti are given in [ll]. It  can be seen from (14) that  an  optimal  trajectory consists of 

the  trajectory  due  to  an initial full thrust in the direction of wi(t) ,  a  coasting  trajectory, 

and a trajectory  due  to full thrust  opposite  the direction of wi(t) ( see  Fig.1). 

Another basic manuever is to transpose  or  interchange  the  positions of a spacecraft pair, 

say the  i-th  and  j-th spacecraft. In this case, we set 

ri d ( t )  = rp(t) ,  r;(t) = rf(t), (19) 

and define 

p i i ( t )  rp(t)  - r:(t), wi(t) = ~ z i ( t ) / l l ~ ~ i ( t ) l l ,  W j ( t )  = -wi(t). (20) 

As before, we consider the  projection of (r i ( t )  - rf(t)) onto the direction wi(t) given by 

(5). Under the  assumption  that 

r:(t) = rf(0) + q(t), r;(t) = rg(0) + q ( t ) ,  -(21)'  

where q = q ( t )  is the formation  drift  vector as in (7), then wi(t) = rp(0) -rf(O) is a constant 

vector,  implying that  the initial or desired formation patterns for t 2 0 are  shapeinvariant. 

Thus, Eq. (8) for si( t )  is  valid here. Consequently, the earlier  results for the minimum-fuel 

translational manuever are also applicable to this case. 

Note that requiring the  i-th  and  j-th spacecraft to move along their respective directions 

wi(t) and wj(t) = -wi(t) simultaneously  during  transposition could result in a collision. 

This  situation  can  be avoided by executing a collision-avoidance manuever when the  space 

craft are close to each other,  or by introducing a side-stepping  motion before initiating 

the  transposition,  and a recovery motion before terminating  the  transposition.  The above 

mentioned situation  can also be avoided by moving more than two spacecraft simultaneously 

along straightline  paths  to  their desired positions without  transposition. 
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T y p e  1 Formation  Reconfiguration 

We assume that  the  formation  patterns P " ( t )  = {rT(t), . . . , r k ( t ) } ,  t 2 0, before recon- 

figuration  are  shape-invariant. Let the desired formation pattern  at  time t be  denoted by 

p d ( t )  = { d l ( t ) ,  . . . , d N ( t ) } .  We further assume that  there is a one-to-one correspondence 

between the elements of P d ( t )  and  the  set of desired spacecraft positions {rf(t) ,  . . . , r$(t)} 

such that rf(t) = dj(t) for i ,  j ,  E Z. 

First, we consider the simplest case where ry(t) and r f ( t )  = .dj ( t )  are related by a trans- 

lation, i.e. 

ri ( t )  = ai + rr(t), i E 2, d 
(22) 

where ai is a given constant  vector in R3, and Z denotes the spacecraft index set. Evidently, ~ 

P d ( t ) ,  and {rf(t), . . . , r$(t)}, t 2 0, are also shape invariant. 
~ 

, 

Assuming that rf(t) is visible from rf(t) at any  time t 2 0 for  any i E 2, (i.e. the line 

segment  joining r f ( t )  and rp(t) does not pass through rg(t) or rjd(t) for any j E 2 - { i } ) ,  then, 

given a transfer  time Ti 2 Ti+, the  i-th spacecraft  can  be  steered  from r:(O) to rf(Ti) with 

minimum fuel expenditure by a control of the form (14). The formation reconfiguration can 

be achieved by moving one or a small  number of spacecraft at a time. Thus,  the minimum 

total fuel expenditure for formation reconfiguration is given by FT = EL1 F(uf ) .  Note that 

given an  upper  bound FT for FT, we can always choose a set of transfer  times T I , .  . . , TN 

satisfying Ti 2 T:, i = 1,. . . , N such that FT 5 FT. 

Next, we consider the case where r f ( t )  = rp(t) for some j E Z-{i}. Under the  assumption 

that  the initial  formation  patterns  are  shape-invariant, (rf(t) - r r ( t ) )  or (rg(t)  - rp(t)) is 

a constant nonzero vector for all t 2 0. Again, we assume that r j ( t )  is visible from rf ( t )  

at any time t 2 0. Although it is possible to reconfigure the formation by moving all 

the spacecraft to  their desired positions simultaneously, such an approach may result  in 

chaos due  to control  system  malfunctions and/or possible collisions between the spacecraft. 
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Therefore we propose a more prudent  approach to reconfigure the  formation by introducing 

a sequence of manuevers involving a  small number of spacecraft at a  time. To clarify ideas, 

we first consider in  detail  the case involving transpositions between spacecraft pairs. Thus, 

the  optimal formation reconfiguration problem is to find a sequence of transpositions  with 

minimum fuel expenditure. 

Let u be a permutation of the index set Z (Le. a one-to-one mapping of 2 onto Z such 

that for i E 2, u ( i )  = si E Z; and u( i )  = u ( j )  if and only if i = j) described by the usual 

notation 

Let G(Z) denote  the set of all permutations of Z. For u, u’ E G(Z), we define their  product 

aa’ by (uu’)( i )  = a(u’( i ) ) , i  E 2; the  identity by i(i) = i for each i E Z; and cr-’ (the inverse 

of u )  by u-lu = u0-l = i. It  can  be readily verified that G(Z) is a group. 

Let the initial  spacecraft  formation be represented by a permutation of Z denoted by 

g o = (  s o l  l . . . N  * * S O N  ) .  

Since the  shape of the  formation body is assumed to be  invariant  under  reconfigmation, 

the desired  formations  correspond  to  other  permutations of 2. The  set of all  formations 

corresponding to  permutations of uo forms a group with N !  elements. 

Now, consider a transposition defined by the permutation: ~ ( i ’ )  = j ‘  and T ( j ’ )  = i’ for 

i‘ # j ’  E z, and ~ ( i )  = i whenever i # i’ and i # j ’ .  The following property  can  be verified 

by induction: 

Property A .  Every permutation u E G(Z) is a product of transpositions. 

The above  property implies that any desired reconfigured formation is attainable from 

any  initial  formation by some product of transpositions. To facilitate  the  computations, we 

use the column  vector s = ( 3 1 , .  . . , sN)*(with si E 2, and si = sj if and only if i = j )  to 
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denote  a  formation or a  permutation of Z. The transformation that takes s = ( S I , .  . . , S N ) ~  

into s’ = ( S I ) ,  . . . , s ~ t ) *  can be represented by the N x N permutation  matrix P(,j,,> in 

which the elements  in the  i-th column (for each i )  are all zero except for the one in the i’-th 

row, which is unity. Thus, s’ = P(st,s)  s. Evidently, any permutation group is isomorphic 

with the  group of corresponding  permutation matrices. The  transposition defined earlier 

can  be  represented by a special N x N permutation  matrix T ( i ~ d j ) l  i’ # j ‘  E 2, in which 

the (ill j’)-th  and ( j ’ ,  2’)-th elements and  the diagonal elements ( i  # i’, j ’ )  are unity, and  the 

remaining  elements are all zero. 

Now, given an  initial formation so and a desired formation sd, there exists a permutation 

matrix P(,,,,o) represented by a  product of transpositions T(i, j)  , . .  . , T(ij,j/) such that s d  = 
T(i,j)o..  .oT(ij,jt)so. In general, the  product of transpositions that  take so to s d  is nonunique. 

Moreover, there may exist transpositions  that  are  not admissible due  to physical constraints 

derived from  formation geometry and  other considerations. 

To clarify the foregoing notions, we consider a  simple example. 

Example 1 Consider  a  spacecraft triad in triangular  formations  with index set 2 = 

{1,2,3}. Let the  initial formation (see Fig.2) be  represented by so = (1,2, 3)T. Then 

the  remaining possible triangular formations  generated by permuting so have the represen- 

tations: s1 = (1, 3,2)T, s2 = (2,  1,3)T,s3 = (2,3,  1)T,s4 = (3,2, l)T, and s5 = (3,  1,2)T. 

Evidently, s1 can  be generated  from so by applying the  transposition  represented by the 

matrix: 

Formation s5 can  be generated from so by applying the  permutation matrix: 



which has three  distinct decompositions in the form of products of two transpositions given 

by: 

where 
0 0 1   0 1 0  

1 0 0   0 0 1  
T(3,l) = [ 0 1 0 1  9 T(1,2) = [ 1 0 0 1  - (28) 

Now, suppose that  the initial  formation is a 2ine formation  represented by so = (1,2,  3)T as 

before. The reconfigured formations are line formations  generated by permuting so as shown 

in Fig.3. Clearly, these line formations have the same  representations  as in the  triangular 

formation case. Suppose that a  transposition between a  spacecraft  pair is  admissible only if 

they  are  mutually visible (i.e. there  are no other  spacecraft lying in  the line segment joining 

the spacecraft pair).  Then,  the  transposition T(3,1) is not admissible. Consequently, P(a5,so) 

has  a  unique  admissible decomposition T(1,2)T(2,3).  

To solve the minimum-fuel formation reconfiguration problem, we propose the following 

basic steps: 

Step 1. Construct  the N x N minimal-fuel expenditure  matrices F(”), n = 1,.  . . , N ,  whose 

( i ,  j)- th element F$” corresponds to  the minimal fuel expenditure  associated  with moving 

the  n-th spacecraft  from the  j-th  to  the  i-th location  in the formation. Obviously, F(n) is 

symmetric with zero diagonal elements. The numerical values for f‘$’ can  be  computed 

using (16). For a  transposition manuever involving moving the  n-th spacecraft from the 

j-th  to  the  i-th position in the  formation,  and  the  m-th  spacecraft from the  i-th  to  the  j-th 

position in  the  formation,  the  total fuel expenditure is F(jn) + FjY). 
Step 2. Given the initial and desired formations represented by so and s d  respectively, 

obtain  the  permutation  matrix P(,,,ao) and find all its possible decompositions in the form 

of products of admissible  transpositions. 
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Step 3. For each decomposition obtained in Step 2, compute the corresponding total fuel 

expenditure by summing the fuel expenditures for all the  transpositions in the decomposi- 

tion. 

Step 4. Determine the minimum-fuel product of transpositions  for  formation reconfigura- 

tion by minimizing the  total fuel expenditure over all admissible products of transpositions. 

The first three  steps  are straightforward. The  fourth  step is akin to  the well-known 

“Travelling Salesman  Problem”. when  the number of spacecraft is large, say N 2 50, 

the solution to  this problem becomes computationally intensive. However, the presence of 

constraints helps to reduce the  total number of product of admissible transpositions  thereby 

reducing the complexity. Moreover, efficient methods for solving this problem are available 

[12]. Note that all the foregoing steps  can  be performed off-line, and  the resulting  optimal 

sequences of spacecraft  transpositions  can  be  stored  in  computers  on-board the spacecraft. 

As mentioned  earlier, collision between a  pair of spacecraft during  transposition may occur 

without collision-avoidance manuevers. Therefore, it is of interest to  consider moving small 

sets of spacecraft  in sequence, each set  containing more than two  spacecraft, to achieve 

formation reconfiguration. To facilitate the subsequent  development, we introduce  a few 

definitions. 

Definition 1. Let u and u1 be two permutations of Z. Then u and u’ are disjoint if 

every integer  in Z moved by u is  fixed  by d ,  and every integer moved by u‘ is fixed  by u. 

Definition 2. A permutation u of Z is a cyc2e of length  m or m-cycle, if it is a permutation 

of a  subset {si, . . . , sh} of Z that replaces si by si, si by si, . . . , s , , ~  by 32, and sh by I 

S i .  

Evidently, two disjoint permutations u and u‘ commute, i.e. uu’ = u’u. Also, a  trans- 

position is a cycle of length 2. We  know that given any  initial  and desired formations 
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corresponding  to  permutations of Z represented by so and S d  respectively, there exists a per- 

mutation  matrix P(,,,,o) which is decomposable into a product of transpositions. Now, the 

main question is whether  it is possible to decompose P(,,,,o) into  a  product of permutation 

cycles of length m > 2. To answer the foregoing question, we make use of the following  basic 

property of permutation groups [13],[14]: 

Property B. Let u be a  permutation of Z. Then u can be expressed  as  a  product of disjoint 

cycles.  This  cycle  decomposition  is  unique up to  re-arrangement of the  cycles  involved. 

From Definitions 1 and 2, disjoint cycles imply that no two  cycles  move a common point. 

Note that  the cycles in the decomposition may have lengths 3 2. Property B suggests 

that we should first seek the decompositions of the given P(sd,so) in terms of disjoint cycles 

which can  be readily  determined (for a simple algorithm, see page 30 of [14]). If all the 

disjoint cycles have lengths > 2, then we can reconfigure the  formation by a composition 

of permutations of small  spacecraft  groups containing more than two spacecraft. For an 

admissible  product of permutation cycles, the corresponding minimum fuel expenditure  can 

be determined  from (16). In the  actual formation reconfiguration process, all the spacecraft 

associated with any cycle must move simultaneously. But  the disjoint cycles can  be  initiated 

at different times. The foregoing approach  can be illustrated by the following example. 

Example 2 Consider  four  spacecraft in diamond-shaped  formation patterns. Here, the 

index set Z is {1 ,2 ,3 ,4} .  Let the initial  formation (see Fig.4) be  represented by so = 

(1 ,2 ,3 ,  4)T. The index  set Z has 4! permutations including the  identity  permutation.  These 

permutations  can  be classified into  the following categories: 

6 cycles of length 4: 

C4 = { (4 ,1 ,2 ,  3 ) T ,  (2 ,3 ,4 ,  Q T ,  (2,4,1,   3>T, ( 3 , k  4,   2lT,  (3,4,2,   (4,3,1,   2lTh 

8 cycles of length 3: 
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The formations  corresponding to these  permutations  are  illustrated  in Fig.4. The spacecraft 
I 
I 

~ 

movements are indicated by arrows. Now, if the desired spacecraft  formation sd belongs ~ 

to C4 or C B ,  then formation reconfiguration can  be achieved by a single cyclic permuta- 

tion  without  transposition.  The  total fuel expenditure can be  computed by summing the 

fuel expenditures  associated  with  the movements of spacecraft  in the  permutation cycle 

using (16). If sd belongs to C2 or n / ,  then formation reconfiguration can  be  obtained by 

transpositions  or  product of cycles of lengths > 2. For example, the desired formation 

sd = (3 ,4,1,   2)T E JV can be attained from the initial  formation so = (1 ,2 ,3 ,  4)* by  two 

disjoint transpositions: so -+ (3 ,2,1,   4)T -+ s d ,  or by  two successive nondisjoint cycles of 

length 3: so - (3 ,2 ,4 ,  l)T -+ s d .  We note from Fig.4 that for the first four cycles of length 

4, collision between spacecraft occurs when the  paths connecting the 1,2 and 3,4 positions 

in  the  formation cross each other  at  the  same time. However,  collision may be avoided 

by making the  transition times associated  with the  paths connecting positions 1,2 and 3,4 

different from each other. 

Type 2 Formation Reconfiguration 

In  this  type of formation  reconfiguration,  a specified position  in the desired formation 

may be  occupied by any spacecraft of a  particular  type. As before, the initial and desired 

formation  patterns  at  time t are specified by the point  sets P o ( t )  = { ry ( t ) ,  . . . ,r&(t)} 
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and P d ( t )  = {dl( t ) ,  . . . , d,y(t)} respectively. We assume that each element d j ( t )  E p d ( t )  

corresponds to a  unique r t ( t )  for some i E Z = { 1 , .  . . , N } .  

First, we consider the simplest case where all N spacecraft are identical. Moreover, 

r:(t) and rf(t) = d j ( t )  are  related by a  translation given by (22). In this case, there  are 

N !  permutations for formation reconfiguration. However some permutations may not be 

admissible  due to  the fact that rt(t) is not visible from rp(t) for some i E 2. The solution 

to  the minimum-fuel reconfiguration problem can be solved by first computing the  total 

minimum-fuel expenditure  associated  with each admissible permutation,  and  then  determine 

the  permutation  with  the least total minimum-fuel expenditure. 

Next, we consider the general case where rf(t) and rp(t) have the form: 

rf(t) = rf(0) + q(t) ,  rp(t) = rf(O) + q(t), i = I , .  . . , N ,  (29) 

where q ( t )  is a specified formation  drift vector. Thus,  the initial and desired formation  pat- 

terns  are  shapeinvariant over some time  interval IT .  Let Po( t )  (resp.Pd(t))  be  partitioned 

into P disjoint subsets of identical spacecraft represented by index  set S; (Resp. Sf) C Z 

with UrZ1Sjd = UT=lSj”,l = 2. We assume that Sj” and Sjd have the  same  number of elements 

nj .  Since any element of Sf may be replaced by any element of Sj, therefore we have a total of 

N!/lI?=I(nj!) distinct formations. Again, we use the column vector S j  = ( S j l , .  . . , s j n j )  T with 

sji E S j ,  and aj i  = sjil if and only if i = a‘, to denote  a permutation of Sj.  Thus,  the initial 

and desired  formations  can  be  represented by so = (sTl, . . . , szp)T and s d  = (sdl T , . . . , s & ) ~  

respectively. Given so and sd, the  permutation  matrix P(,,,,O) relating so and s d  may not be 

unique, since there may exist many ways for attaining Sdi by the components  of Soi .  For a 

given P(sd,so), we may seek its decomposition as  a  product of disjoint cycles as proposed ear- 

lier for Type l formation  reconfiguration, and  determine  the minimum-fuel decomposition 

corresponding to P(rd,so). Then  the solution to  the minimum-fuel formation reconfiguration 
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problem can be found by considering the minimum-fuel admissible decompositions for all 

possible permutations associated  with P(sd,sO). 

To obtain a  practical solution to  the foregoing problem, we propose to simplify the problem 

by first identifying  those  spacecraft in the initial  formation that  match  both  the positions 

and spacecraft  types in the desired formation.  These spacecraft will remain jixed relative 

to  the  formation  during reconfiguration. Then, we seek a  solution to  the minimum-fuel 

reconfiguration problem for the remaining spacecraft using the  method described earlier. 

This simplified approach may lead to a  sub-optimal  solution when the fuel expenditures for 

moving the fixed spacecraft are small  relative to those for moving the remaining spacecraft. 

Now, we illustrate  the application of the proposed method  with the aid of an example. 

Example 3. Consider eight spacecraft whose initial and desired formations correspond to 

equally spaced  points  on  a circle (see Fig.5). There  are two sets of spacecraft  (marked by 

small circles and black dots). Each  set  contains four identical spacecraft. Let the initial 

formation be specified by the  pattern shown in Fig.5, and  represented by so = (1,2,. . . , 8)T. 

Since no  distinction is made between identical  spacecraft, hence there  are 8!/(4!)2 = 70 

possible formations  generated by permutations. Let the desired formation  be specified by 

the  pattern shown in Fig.5.  We observe that  the spacecraft at  the 2,3,7 and  8-th positions 

in the  initial  formation  match  the  types of spacecraft in the corresponding positions in 

the desired  formation. Following the proposed  approach, we first consider moving  only 

spacecraft 1,4,5 and 6 to  attain  the desired formation.  In particular, we seek permutation 

cycles of { 1,4,5,6} with  lengths > 2 that  match  the corresponding  points  in the desired 

formation.  Figure  5 shows  two permutation cycles of length  4 which lead to  the desired 

formation,  namely (6,2,3,1,4,5,7, 8)T or  (4,2,3,5,6,1,7, 8 ) T .  It is evident that  there  are 

no permutation cycles of length  3 that lead to  the desired formation, if we only allow to move 

spacecraft  1,4,5 and 6. But if we  allow to move spacecraft  1,2,4,5,6 and 8, while keeping 
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spacecraft 3 and 7 fixed relative to the formation, then  the desired formation can be  attained 

by any one of the following products of two disjoint cycles of length 3 (see Fig.6): 

( ( 1 , ~  3 ,4 ,8 ,5 ,7 ,  6 l T 1  (2 ,4 ,3 ,1 ,8 ,5 ,   7 ,  G ) ~ ) ,  

{ (8 ,2 ,3 ,4 ,5 ,1 ,  71 6)T, (8 ,4 ,3 ,5 ,2 ,  197, 6)T}, 

{ (2 ,6 ,3 ,4 ,5 ,1 ,7 ,  8 l T ,  (2 ,6 ,   3 ,5 ,8 ,1 ,7 ,  4 ) T ) ,  

{ (812 ,3 ,1 ,   5 ,6 ,7 ,  4)T, (8 ,6 ,3 ,1 ,2 ,5 ,7 ,  4)T}. 

Thus, if  we choose to fix spacecraft 3 and 7 relative to  the  formation,  and move only 

three spacecraft at a time,  the minimum-fuel formation  reconfiguration  can be determined 

by computing the fuel expenditures  for all the  products of disjoint cycles of length 3 

(assuming that all  these  products  are  admissible),  and selecting the one with lowest fuel 

expenditure. 

Simulation Study 

The  main  objective of the simulation study is to determine  the dynamics of the space- 

craft  with  the proposed  methods for minimum fuel formation reconfiguration. Here, each 

spacecraft is equipped  with  a  simple collision avoidance control. Let Bo = {el, e2, e3) be an 

orthonormal basis for the three-dimensional Euclidean space R3. The representation of any 

position  vector r E R3 with  respect to L3 is denoted by the column vector (z, y, z ) ~ .  

First, we consider four  nonidentical  spacecraft  with  diamond-shaped  formation patterns 

as in Example 2. At time t = 0, all spacecraft lie  in the plane {(z, y, t )  E R3 : z = 0). The 

initial  formation  patterns  are specified by P o ( t )  = {ry(t), . . . , ri(t)), where 



where the coordinates  are in meters. We assume that all spacecraft  drift upward along the 

z-axis with  a  constant speed of lo3 m/sec in free space in the absence of gravity  and  external 

forces. Thus, q(t) = ( O , O ,  103t)T. The masses and  the  magnitude  bounds for the controls 

of spacecraft 1-4 are given by 10,20,30,40 kg; and 0.1,0.2,0.3,0.4 N. respectively. Let the 

desired formation pattern  at  time t be specified by P d ( t )  = {dl(t), . . . , d 4 ( t ) } ,  where 

Assuming that rf(t) = d i ( t )  for i = 1 ,2 ,3 ,4 ,  the desired and  initial formations  can  be 

represented by s d  = (3,4,1,  2)T and so = (1 ,2 ,3 ,  4)T respectively, and  they  are related by a 

permutation represented by the  matrix 

The formation reconfiguration can  be achieved by two disjoint transpositions between space- 

craft 1 and 3, and between spacecraft 2 and 4.  To avoid  collisions, we use the following simple 

scheme similar to  that described in [14]. Let each spacecraft be enclosed by a ball S i ( t )  cen- 

tered ar r i ( t )  with specified radius E* (i.e. S i ( t )  = {r E R3 : Ilr - ri(t)(I 5 E i } ) .  The  i-th  and 

j-th spacecraft are  said  to  be  within unsafe  mnge at  time t ,  if S , ( t )  rl S j ( t )  is nonempty. In 

this  situation, we set  the controls for the  i-th  and j - th  spacecraft to 

where wi(t) is defined in (3); hi(t) is a  unit vector orthogonal to r j ( t )  - r , ( t ) ;  hj( t )  = -hi(t);  

ai and aj are  suitable positive constants; fc i  and fcj are given positive  constants correspond- 

ing to  the maximum  thrust  magnitudes  for  the  i-th  and  j-th spacecraft respectively; and ur 

is  given  by (17) with  parameter /3 set at 1.1. Figure 7 shows the spacecraft  trajectories  in 

R3 during  formation  reconfiguration  without collision-avoidance controls. The  timedomain 
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records for the corresponding minimum-fuel controls are shown in Fig.8. The normalized 

fuel  expenditures for each spacecraft and  the  total normalized fuel expenditure  are shown in 

Figs.9a and 9b respectively. Here the  transposition between spacecraft  1 and 3 (resp. 2 and 

4) takes place for 100 5 t 5 242.45 sec. (resp. 350 6 t 5 492.45 sec.) Next, the collision- 

avoidance controls given by (32) with E = 20 m. and h;(t) = ( O , O ,  l)T are activated. The 

corresponding  spacecraft  trajectories  in R3 are essentially identical to those shown in Fig.7 

except for the  period when the collision-avoidance controls are active. The variation of the 

distance between spacecraft  pair  {1,3} (or {2,4}) with  time  during  this  period is shown in 

Fig.10. Figure 11 shows the corresponding normalized total fuel expenditure.  It can be seen 

that  the  total fuel expenditure is increased approximately 50 percent over that for the case 

without collision-avoidance controls. 

Now  we consider eight spacecraft composed of two sets of identical  spacecraft, S1 = 
{1,3,5,7}  and S2 = {2,4,6,8}  with 10 kg. and 20 kg. masses; and  with control mag- 

nitude  bounds 0.1,  0.2 N. respectively. Their  initial and desired formations correspond 

to equally  spaced  points on a circle as  in Example 3. At time t = 0, all spacecraft lie 

in  the  plane ((2, y, z )  E R3 : z = 0). The initial  formation patterns  are specified by 

P"(t) = {rf(t), . . . , r $ ( t ) } ,  where 

[r;(t)]" = (60 + 50 cos((3 - i ) a / 4 ) ,  60 - 50 sin((3 - i ) n / 4 ) ,  O ) T  + q(t),  i = 1 , .  . . ,8, (33) 

where q(t) = ( O , O ,  103t)T implying that all spacecraft drift  upward along the z-axis with  a 

constant  speed of lo3 m/sec. 

First, we consider formation  reconfiguration by cycling two disjoint sets of three space- 

craft. From Fig.6, it is evident that  the fuel expenditures  associated with  the first two 

products of disjoint cycles of length  3  are identical. This is also true for the  last two prod- 

ucts of disjoint cycles of length 3. Figure 12 shows the spacecraft  trajectories  in R3 during 
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reconfiguration by cycling spacecraft 1,2,4 and 5,6,8. The normalized fuel expenditures for 

each spacecraft and  the normalized total fuel expenditure  are shown in Figs.13 and 14 respec- 

tively. Similar  results are  obtained for the case where reconfiguration is achieved by cycling 

spacecraft 1,2,6 and 4,5,8. Their  corresponding  spacecraft  trajectories and normalized total 

fuel expenditures  are shown in Figs.15 and 16 respectively. Finally, we consider formation 

reconfiguration by cycling four  spacecraft to achieve the desired formation as depicted in 

Fig.5. Clearly, both cycles of length 4 as shown in Fig.5 have the  same fuel expenditure.  The 

spacecraft  trajectories  and  the normalized total fuel expenditures  are shown in Figs.17 and 

18 respectively. Comparing the  total fuel expenditures for all foregoing cases, we conclude 

that  the minimum total fuel expenditure for formation reconfiguration is attained by cycling 

four spacecraft { 1,4,5,6}. 

Concluding Remarks 

The  main idea in  the proposed method for solving the minimum-fuel formation reconfigu- 

ration  problem is to  break up the reconfiguration process into  a sequence of basic minimum- 

fuel maneuvers involving a small  number of spacecraft. Thus,  it represents  a simple prudent 

approach to  the formation reconfiguration process in which catastrophic failures could be 

avoided. The method requires determining first the basic minimum-fuel maneuvers for a 

single spacecraft. Then,  the minimum-fuel formation reconfiguration problem is reduced to 

a  combinatorial  optimization  problem. In this  paper, we have considered only the case where 

no significant gravitational  and  other  disturbance forces are present so that only straightline 

spacecraft  trajectories need to  tbe considered. When the  gravitational forces are significant 

as in the case where the spacecraft move along low planetary  orbits,  there may exist regimes 

where the  gravitational forces may be utilized to reduce fuel expenditure  during formation 

reconfiguration.  In this case, the minimum-fuel trajectories  are generally space curves. Nev- 

ertheless, the proposed  approach remains applicable  once the minimum-fuel maneuvers for a 
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single spacecraft have been determined.  In  fact, the proposed approach is also applica ,ble for 

optimization problems involving general cost functionals other  than  total fuel expenditure 

[161,[171. 
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Figure Captions 

Fig. 1 Minimum-fuel trajectory. 

Fig.2 Triangular  formation. 

Fig.3 Line formations for spacecraft  triad. 

Fig.4 Decomposition of formation for four spacecraft into cycles. 

Fig.5 Formation consisiting of eight  spacecraft equally spaced on  a circle with fixed spacecraft 

2,3,7 and 8. 

Fig.6 Products of disjoint ccycles of length  3 corresponding to eight  spacecraft  with fixed 

spacecraft  3 and 7 for attaining s d .  

Fig.7  Trajectories of four  spacecraft  in R3 during reconfiguration involving transposition 

between spacecraft  1,3  and 2,4 without collision-avoidance controls. 

Fig.8 Time-domain behavior of minimum-fuel controls for spacecraft 1-4. 

Fig.9a Normalized fuel expenditures for spacecraft 1-4 during reconfiguration. 

Fig. 9b Total normalized fuel expenditure  during reconfiguration. 

Fig. 10 Distance between spacecraft  pair { 1,3} (or {2,4))  during collision-avoidance maneu- 

ver. 

Fig. 11 Total normalized fuel expenditure  during reconfiguration. 

Fig.12 Trajectories of two sets of four identical spacecraft in R3 during reconfiguration by 

cycling spacecraft  1,2,4 and 5,6,8. 

Fig.13a Normalized fuel expenditures for spacecraft 1,2 and 4 during reconfiguration. 

Fig.13b Normalized fuel expenditures  for spacecraft 5,6 and 8 during reconfiguration. 

Fig.14 Total normalized fuel expenditure  during reconfiguration by cycling spacecraft  1,2,4 

25 



and 5,6,8. 

Fig.15 Trajectories of two sets of four identical spacecraft in R3 during reconfiguration by 

cycling spacecraft 1,2,6 and 4,5,8. 

Fig.16 Total normalized fuel expenditure  during reconfiguration by cycling spacecraft 1,2,6 

and 4,5,8. 

Fig.17 Trajectories of two sets of four identical  spacecraft  in R3 during reconfiguration by 

cycling spacecraft  1,4,5 and 6 .  

Fig.18 Total normalized fuel expenditure  during reconfiguration by cycling spacecraft  1,4,5 

and 6. 
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( a )  A l l  possible  triangular  formations. 

(b )  Formations attained by transpositions.  

F i g .  2 Triangular  formations. 
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(b)   Admissible   and  inadmissible   t ransposi t ions.  

F ig .3   L ine   format ions   for   spacecraf t   t r iad .  
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F i g . 4  Decomposition of  formations for  fou r  spacecraft  into  cycles.  
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s = ( 1 , 2 , . .  . , 8 )  T 

Cycles  of Length 4 for  Attaining sd: 

Desired Formation s : 
d 

Fig.5 Formation consisting  of  eight  spacecraft  equally 
spaced on a circle with  fixed  spacecraft 2 , 3 , 7  and 8. 
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Desired Formation s : 
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Fig.6 Products   o f   d i s jo in t   cyc les   o f   l ength  3 corresponding  to 8 
spacecraf t   wi th   f ixed   spacecraf t  3 and 7 f o r   a t t a i n i n g  sd. 
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Fig.7  Trajectories  of  four  spacecraft  in  the world space  during 
reconfiguration  involving  transposition between spacecraft 
1 , 3  and 2 . 4 ,  without  collision-avoidance  controls. 
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Fig.9a Normalized fuel  expenditures  for  spacecraft 1-4 during 
reconfiguration. 
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Fig.12  Trajectories of two sets of four identical  spacecraft in R3 during  reconfiguration by 

cycling  spacecraft 1,2,4 and 5,6,8. 
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Fig.13b  Normalized  fuel  expenditures  for  spacecraft 5,6 and 8 during  reconfiguration. 
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Fig.14 Total  normalized fuel  expenditure  during  reconfiguration 
by cycling  spacecraft 1 , 2 , 4  and 5 , 6 , 8 .  
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Fig.15 Tkajectories of two sets of  four identical 'spacecraft in R3 during reconfiguration by 

cycling  spacecraft 1,2,6 and 4,5,8. 
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Fig.16 Total  normalized  fuel  expenditure  during  reconfiguration 
by cycling  spacecraft 1 .2 .6  and 4 . 5 . 8 .  
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Fig.17 Trajectories of two sets of four identical  spacecraft  in R3 during  reconfiguration by 

cycling  spacecraft 1,4,5 and 6. 
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Fig.18 Total  normalized  fuel  expenditure  during  reconfiguration 
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